技術:AIが「グランツーリスモ」のチャンピオンドライバーを追い越した
Nature
2022年2月10日
Technology: AI can outrace champion Gran Turismo drivers
ライバル車との接戦を繰り広げる自動車レースゲーム「グランツーリスモ」で、世界チャンピオンレベルのプレイヤー相手に勝利した人工知能(AI)エージェントについて報告する論文が、Nature に掲載される。このエージェントは、レースのエチケットを守りながら、卓越した走行速度、車両制御、戦術を披露した。今回の知見は、自律航法やAIの基礎研究に役立つかもしれない。
AIの適用可能例の多くでは、人間と関わり合いながら、物理系においてリアルタイムで意思決定を行うことが求められる。自動車レースは、そうした状況の一例だ。ドライバーは、静止摩擦限界で車両を操作しつつ、複雑な戦術的操作を実行して、ライバル車を追い越したりブロックしたりしなければならない。プレイステーション用ゲームの1つである「グランツーリスモ」のようなレースシミュレーションは、実際のレースカーの制御の課題を再現しており、機械学習にとって高難度の適用例になっている。
今回、Peter Wurmanたちは、深層強化学習を使って、Gran Turismo Sophy(GT Sophy)と名付けたAIエージェントに、「グランツーリスモ」をプレイする方法を教えた。GT Sophyは、レースコースで用いる効率的な加速と制動の技術を習得するよう訓練され、さまざまな状況下、または相手にブロックされたときに別の経路を見つける方法を学習した。高性能のAIの訓練で最も困難な側面の1つは、レースのエチケット(外部の人間の審判が決めた一連の緩やかな規則)に違反することに伴う罰則を確実に回避することだ。GT Sophyは、3通りの車両(時速300キロメートルを超える車両を含む)と自動車レース場の組み合わせによって異なるレース課題が提示された状況下で、世界最高のeスポーツドライバー4人と大接戦を演じ、勝利を収めた。
競争的課題(チェス、ポーカーなど)でコンピューターが最強の人間を打ち負かすという流れが続いているが、今回の結果は、この流れを引き継ぐ新たな一歩だ。Wurmanたちは、今回の知見は、自動車レースゲームの楽しさを向上させるだけでなく、プロのドライバーの訓練や新しいレース技術の発見のための現実的でハイレベルな競争状況を作り出すかもしれないと示唆している。また、この手法は、現実世界のシステム(ロボット、空中ドローン、自動運転車など)にも適用できる可能性がある。
doi: 10.1038/s41586-021-04357-7
注目の論文
-
11月21日
天文学:近くの恒星を周回する若いトランジット惑星が発見されるNature
-
11月18日
惑星科学:嫦娥6号のサンプルが月の裏側の火山活動の年代を特定Nature
-
11月14日
物理学:スマートフォンによる電離層の変化のマッピングNature
-
11月13日
地球科学:2022年のマウナロア火山の噴火を調査するNature Communications
-
11月12日
惑星科学:ボイジャー2号が天王星をフライバイしたのは太陽の異常現象の最中だったNature Astronomy
-
11月8日
惑星科学:火星の岩石堆積物は太古の海の名残かもしれないScientific Reports