化学:化学者の直観を機械学習したモデルによる創薬支援
Nature Communications
2023年11月1日
Chemistry: Machine learning chemists’ intuition to assist drug discovery
プロの化学者がそれぞれのキャリアで得た集合的な知識(通常「化学的直観」と呼ばれる)を部分的に再現できる機械学習モデルについて報告する論文が、Nature Communicationsに掲載される。著者らは、この知見によって、今後の創薬キャンペーンをもっと効率的に遂行できる可能性があると考えている。
これまで、創薬と新規化学物質の発見を導いてきたのは、実験による試行錯誤と研究者がそれぞれのキャリアで得た知識だった。シミュレーションツール、特に機械学習を使用すると、研究者が有望な分子をより効率的に発見できるようになり、新しい医薬品の開発コストを大幅に削減することができる。機械学習によって分子の性質を予測するには、分子を数学的表現に変換する必要があり、この数学的表現は通常、性質や「特徴」の集合体によって構成される。正しい特徴を把握することは、こうしたデータ駆動予測モデルによる性質の予測を成功させるために極めて重要だ。
今回、Nikolaus Stiefl、José Jimenez-Lunaらは、35人の医薬品化学者に2種類の化合物5000組を次々に提示して、望ましいと思う化合物を1つ選ばせるランキングゲームを実施した。そして、これらの化学者たちの回答を使って機械学習モデルを訓練し、その後、この機械学習モデルを使って、それぞれの化合物に点数を付けた。この点数は、長い年月をかけて蓄積された業界の知識を総合的に把握したものであるため、この分野でこれまでに特徴として用いられた他の性質とはほぼ無関係なものとなっている。そのため、この機械学習モデルを使えば、数理モデルが推奨する事項を修正して、化学者の集合的な専門知識との整合性を高めることができ、将来の早期創薬キャンペーンにおいて反復的に行われる作業を加速させる可能性がある。
著者らは、この方法には、創薬キャンペーンにおける分子モデル化研究を補完する可能性があるという見解を示している。
doi: 10.1038/s41467-023-42242-1
注目の論文
-
3月4日
天文学:宇宙における水の初期の証拠Nature Astronomy
-
2月28日
考古学:ベスビオ火山の火山灰雲が脳をガラスに変えたScientific Reports
-
2月27日
量子コンピューティング:キャット・コードが量子エラーを訂正し、オーバーヘッドを削減するNature
-
2月27日
気候変動:AMOC(大西洋子午面循環)は将来の温暖化に耐えられるかもしれないNature
-
2月26日
惑星科学:火星に固体の内核が存在する可能性Nature Communications
-
2月20日
コンピューターサイエンス:AIツールが創造的なビデオゲーム開発を支援Nature