注目の論文
複雑なネットワーク内の情報のランク付け
Nature Communications
2011年7月20日
Ranking information in a complex network
数多くの検索エンジンがウェブ上のコンテンツをランク付けする際に利用するアルゴリズムを用いた研究で、ネットワーク内の情報をランク付けするときのランク付けの質が、そのネットワークの構造によって影響されることが明らかになった。この研究結果は、こうしてランク付けされた情報が科学やマーケティングにおいてどのように利用されるのかという点に重要な影響を与えるかもしれない。
「Pagerank」技術は、Googleなどの検索エンジンがウェブ上のコンテンツをランク付けする際に用いられている。このアルゴリズムでは、ネットワーク内のリンクをそれぞれ1票と数えて、情報のランク付けを行う。今回、G GhoshalとA-L Barabasiは、ネットワークの構造が、ランク付け性能に影響することを明らかにし、もともと「Pagerank」は、ネットワークのタイプによってランク付けが正確な場合とそれほど正確でない場合が生じる可能性があるという結論を示した。つまり、食物網などの指数関数的ネットワークは、摂動を起こしやすい。一方、インターネットなどのスケールフリーネットワークでは、利用可能な情報とコンテンツの量が増えると、上位にランクされた項目が明白化、安定化し、ランク付けの質が向上する。
doi: 10.1038/ncomms1396
注目の論文
-
12月11日
考古学:意図的な火起こしの初期の証拠Nature
-
12月10日
考古学:ローマの建築技術に関する明確な証拠Nature Communications
-
12月10日
社会科学:電気自動車は従来の自動車と同じくらい歩行者にとって安全であるNature Communications
-
12月10日
ロボット工学:共有制御によりバイオニックハンドの器用さが向上Nature Communications
-
12月9日
Nature's 10:2025年の科学に影響を与えた10人Nature
-
12月5日
人工知能:チャットボットは投票意向に影響を与えるかもしれないNature
