注目の論文
複雑なネットワーク内の情報のランク付け
Nature Communications
2011年7月20日
Ranking information in a complex network
数多くの検索エンジンがウェブ上のコンテンツをランク付けする際に利用するアルゴリズムを用いた研究で、ネットワーク内の情報をランク付けするときのランク付けの質が、そのネットワークの構造によって影響されることが明らかになった。この研究結果は、こうしてランク付けされた情報が科学やマーケティングにおいてどのように利用されるのかという点に重要な影響を与えるかもしれない。
「Pagerank」技術は、Googleなどの検索エンジンがウェブ上のコンテンツをランク付けする際に用いられている。このアルゴリズムでは、ネットワーク内のリンクをそれぞれ1票と数えて、情報のランク付けを行う。今回、G GhoshalとA-L Barabasiは、ネットワークの構造が、ランク付け性能に影響することを明らかにし、もともと「Pagerank」は、ネットワークのタイプによってランク付けが正確な場合とそれほど正確でない場合が生じる可能性があるという結論を示した。つまり、食物網などの指数関数的ネットワークは、摂動を起こしやすい。一方、インターネットなどのスケールフリーネットワークでは、利用可能な情報とコンテンツの量が増えると、上位にランクされた項目が明白化、安定化し、ランク付けの質が向上する。
doi: 10.1038/ncomms1396
注目の論文
-
3月4日
天文学:宇宙における水の初期の証拠Nature Astronomy
-
2月28日
考古学:ベスビオ火山の火山灰雲が脳をガラスに変えたScientific Reports
-
2月27日
量子コンピューティング:キャット・コードが量子エラーを訂正し、オーバーヘッドを削減するNature
-
2月27日
気候変動:AMOC(大西洋子午面循環)は将来の温暖化に耐えられるかもしれないNature
-
2月26日
惑星科学:火星に固体の内核が存在する可能性Nature Communications
-
2月20日
コンピューターサイエンス:AIツールが創造的なビデオゲーム開発を支援Nature