【惑星科学】冥王星の表面に見える多角形の地形の説明
Nature
準惑星の1つである冥王星の氷表面上に奇妙な多角形の地形が観測されているが、厚さ数kmの固体窒素層の内部における対流によって形成されたものである可能性が高いことを報告する2編の論文が、今週掲載される。
冥王星の赤道域にある広大な楕円形の盆地(非公式名「スプートニク平原」)は(主に窒素からなる)氷で満たされており、中心部が周辺部より数十メートル盛り上がった幅10~40 kmの多角形が数多く見られる。この地形の幾何学的形状を説明するための機構としては、熱収縮と対流が提唱されている。
今回、William McKinnonたちは、ニューホライズン探査機による測定結果を用いて、推定された現在の冥王星上の熱流状態を説明するためには厚さ1 km以上の窒素氷の層の内部で対流が起こっていなければならないことを明らかにした。また、McKinnonたちは、数値モデル化によって、この多角形の横幅が長いことを対流の逆転によって説明できることを明らかにし、スプートニク平原の表面の氷の水平速度の計算結果をもとに、この表面が更新される期間を約50万年と推定した。McKinnonたちは、カイパーベルトにある他の準惑星でも類似の対流過程が起こって、氷の層が絶えず若返っているという考えを示している。カイパーベルトは、海王星の軌道の外側にある円盤状の領域で、彗星、小惑星やその他の小型の氷天体が含まれていると考えられている。
これと関連するAlexander Trowbridgeたちの論文では、スプートニク平原上の窒素氷の数値モデルを用いて、冥王星で激しい対流が起こっているという結論が示されている。また、Trowbridgeたちは、窒素氷の層の内部で脆性変形が起こっていないことが熱収縮と矛盾している点も指摘している。
これらの論文に関連してNature Geoscienceに掲載されるPaul Schenk and Francis NimmoのCommentary記事では、「冥王星とカロンは、太陽系のどこでも惑星過程が同じように働くことを明らかにしている。...そうした多様性と複雑性が観測される一方で、見覚えのあるものが地球のはるか彼方でこれほど観測されるのは愉快なことだ」と述べられている。
The peculiar polygonal shapes observed on the icy surface of dwarf planet Pluto are likely to have formed as a result of convection within layers of solid nitrogen several kilometres thick, report two papers published in this week’s Nature.
The vast, oval-shaped basin informally named Sputnik Planum in Pluto’s equatorial region is filled with ice (made up mainly of nitrogen) that is organized into polygons about 10 to 40 kilometres across, with centres rising tens of metres above their sides. Both thermal contraction and convection have been proposed as mechanisms to explain the geometry of this terrain.
William McKinnon and colleagues use measurements from the New Horizons spacecraft to show that layers of nitrogen ice more than one kilometre thick must convect to account for the estimated present-day heat flow conditions on Pluto. They find, through numerical modelling, that convective overturn can explain the great lateral width of the polygons, and they estimate a renewal time of about half a million years, based upon the calculated horizontal velocities of the surface ice of Sputnik Planum. The authors suggest that similar convective processes, which allow for continual rejuvenation of the ice layers, may also be at work on other dwarf planets in the Kuiper belt - the disk-shaped region beyond the orbit of Neptune believed to contain comets, asteroids and other small, icy bodies.
In a related paper, Alexander Trowbridge and colleagues use a numerical model of the nitrogen ice on Sputnik Planum to also conclude that vigorous convection is occurring on Pluto. In addition, the lack of brittle deformation within the nitrogen ice layer is inconsistent with thermal contraction, they note.
In an associated commentary published in Nature Geoscience, Paul Schenk and Francis Nimmo write: “Pluto and Charon show us that planetary processes work in similar ways regardless of where in the Solar System you are… The delight is in seeing such variety and complexity, and yet so much familiarity so far from home.”
doi: 10.1038/nature18289
「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。
注目のハイライト
メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。