Research press release

疫学:携帯電話データを使って中国におけるCOVID-19の感染拡大を予測する

Nature

中国国内の人の移動を集約的に把握する全国規模の携帯電話データを用いて、新型コロナウイルス感染症(COVID-19)の地理的・時間的な感染拡大を最長2週間先まで予測できることを報告する論文が、Nature に掲載される。今回の研究では、2020年1月のCOVID-19の集団発生の初期段階における中国・武漢からの人口の流出分布の分析が行われた。

局地的に集団発生した疾患が広範に流行するようになる時、大規模な人口移動が一因となっていることがある。しかし、例えば、春節(旧正月)を迎えるための2020年1月24日の大規模な集団移動のような人口移動の集積を監視するのは容易ではない。

今回、Nicholas Christakisたちの研究チームは、中国の大手国営通信会社から入手した匿名の携帯電話データを調べ、2020年1月1日から1月24日(検疫実施日)までの間に武漢に2時間以上滞在した1100万人以上の動向を分析し、これらのデータを中国国内の31省と296県の2月19日までのCOVID-19の感染率と関連付けた。

Christakisたちの論文によれば、検疫制限が人々の移動を大幅に減らす上で非常に効果的であり、人口流出は、1月23日には前日比52%減となり、1月24日にはさらに94%減少した。また、Christakisたちは、人口の流出分布を使って、中国におけるCOVID-19感染の頻度と地理的位置を最長2週間先まで正確に予測できることを明らかにし、集団発生の初期段階において伝播リスクの高い都市の候補を特定した。また、Christakisたちは、論文中に報告されたモデルを用いて、今後、さまざまな場所でCOVID-19の経時的市中感染リスクを評価できる可能性があるという考えを示している。

Christakisたちは、この新知見は、携帯電話のデータを利用できる他の国々の政策立案者が、リスク評価を迅速かつ正確に行い、疾患の集団発生時の限られた資源の配分を計画する上で役立つ、と結論付けている。

Nationwide mobile phone data tracking aggregated movements of people in China can accurately predict the geographical and temporal spread of COVID-19 infections up to two weeks ahead of time, according to a study in Nature. The study analysed the distribution of population outflows from Wuhan, China, during the early stages of the COVID-19 outbreak in January 2020.

Large-scale population movements can contribute to localized outbreaks of a disease becoming widespread epidemics. However, monitoring such aggregated population flows, such as the chunyun period of mass travel in China in the run-up to the Chinese Lunar New Year’s Eve on 24 January 2020, can prove challenging.

Nicholas Christakis and colleagues studied anonymized mobile phone data from a major national carrier in China to analyse the movements of more than 11 million people who spent at least 2 hours in Wuhan between 1 and 24 January 2020, when the quarantine was imposed. They linked these data to COVID-19 infection rates until 19 February from 296 prefectures in 31 provinces and regions throughout China.

The authors report that quarantine restrictions were highly effective at substantially reducing movement, with population outflows dropping by 52% from 22 January to 23 January, and by a further 94% on 24 January. They also show that the distribution of population outflows could accurately predict the frequency and geographical locations of COVID-19 infections in China up to two weeks in advance, and identify potential high-transmission-risk cities at an early stage of the outbreak. The authors suggest that the model reported in the study could be used to assess COVID-19 community transmission risk over time in different locations in the future.

The findings could help policymakers in other countries that have mobile phone data available to make rapid and accurate risk assessments and plan the allocation of limited resources during outbreaks, the authors conclude.

doi: 10.1038/s41586-020-2284-y

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度