脳の活動を解読して麻痺した四肢を制御
Nature Medicine
2018年9月25日
Decoding brain activity to control paralyzed limb
四肢麻痺(両腕と両脚の麻痺)患者の脳の活動を解析できるディープラーニング(深層学習)アルゴリズムを開発し、これを用いて患者の前腕の筋肉に電気刺激を与えたところ、それまで麻痺していた腕に機能的な動きが回復したことが報告された。
慢性麻痺の患者のQOL(生活の質)は、脳–コンピューター・インターフェース(BCI)の使用によって改善されることがある。BCIは、運動を支配する中枢神経系回路とコンピューターのカーソルやロボット装置のような補助器具とをつなぐ手段となる。最近では、BCIを用いて脊髄の損傷部位を迂回し、筋肉の直接刺激を介して麻痺した腕の機能を回復させた例が報告されている。この方法は有望だが、実用化するには、正確で迅速な応答の必要性、複数の機能を果たせる能力、必要に応じて毎日行われる効率的な再校正など、難しい問題が残っている。
M Schwemmerたちは、1人の四肢麻痺患者について、腕や手を動かすのを「想像した」ときの大脳皮質の活動を2年間にわたって記録した。脳のこのような活動は、患者の運動皮質中に長期間にわたって侵襲的に埋め込まれた微小電極アレイを通じて集められ、これらの微小電極はニューロンの活動を時空間的に高い分解能で直接サンプリングする。そして、この大量のデータセットから、正確で迅速、かつ持続的に作動し、新たな機能を学習でき、ほとんど再訓練の必要がないBCI復号器が、深層学習の手法によって開発された。この復号器は電気刺激装置の制御に使用でき、患者の麻痺した前腕をリアルタイムで再び動かせることが示された。
今回の患者は復号器を使って物体をつかみ、操作することができたが、この方法を他の患者に適用したり、もっと長い期間にわたって実生活で使用したりするには、確認のためのさらなる研究が必要だと著者たちは結論している。また、制御された実験条件下でのデータではなく、実生活を通して得た訓練データから同じように機能する復号器を作製できるかどうかも、今後の研究で調べなければならない課題だろう。
doi: 10.1038/s41591-018-0171-y
注目の論文
-
1月21日
健康:GLP-1受容体作動薬に関連する健康上の利益とリスクの調査Nature Medicine
-
1月21日
神経科学:ブレイン・コンピューター・インターフェースを用いたバーチャルクアッドコプターの操縦試験Nature Medicine
-
1月16日
人類学:鉄器時代のブリテンにおけるケルトの「ガールパワー」Nature
-
1月14日
健康:米国における認知症リスクの増加Nature Medicine
-
1月14日
微生物学:腸内細菌が砂糖への欲求を制御している可能性があるNature Microbiology
-
1月9日
生物多様性:淡水生物の約4分の1が絶滅の危機に瀕しているNature