注目の論文
集約的畜産を監視する機械学習
Nature Sustainability
2019年4月9日
Machine learning monitors intensive animal agriculture
機械学習を応用して、米国の集約的畜産施設の地図を手作業での調査よりも速く、かつ効率的に作製できることを報告する論文が、今週掲載される。その結果、ノースカロライナ州でこうした施設が新たに589か所特定されており、機械学習の応用は食品産業における環境違反の追跡に役立つ可能性がある。
集中家畜飼養施設(CAFO)は、米国の家畜の約40%を生産し、毎年約3億3500万トンの廃棄物を生み出している。米国のCAFOの約60%は登録されておらず、廃棄物処理の適切な許可を得ていないので、食品の安全性と水や土壌の汚染に深刻な影響を及ぼす可能性がある。米国の現在の法制度は、政府機関によるそうした施設の監視を困難にしている。そのため今のところ、CAFOの数、規模、位置に関する正確なデータはない。
今回Daniel HoとCassandra Handan-Naderは、機会学習法と高分解能画像を用いて米国ノースカロライナ州のCAFOを特定し、その結果と手作業による一覧表を比較している。この手法によって、これまでの手作業の調査と比べて、新たな家禽CAFOが589か所特定され、把握されているCAFO数が15%増加した。
著者たちは、今回の手法によって許可されていない施設や特に環境リスクの高い施設を特定することで、CAFOによる環境法の順守の監視が容易になると示唆している。
doi: 10.1038/s41893-019-0246-x
注目の論文
-
12月19日
天文学:月の年齢はより古いNature
-
12月19日
気候変動:南極の海氷減少が嵐の発生を促すNature
-
12月17日
惑星科学:土星の環が若々しい外観を保っている理由Nature Geoscience
-
12月12日
天文学:Firefly Sparkleが初期の銀河形成に光を当てるNature
-
12月11日
気候変動:世界的な観光産業による二酸化炭素排出量は増加し、不平等であるNature Communications
-
12月10日
Nature's 10:2024年の科学に影響を与えた10人Nature