天文学: 宇宙からの電波信号を機械学習で探索する
Nature Astronomy
2023年1月31日
Astronomy: Machine learning combs radio signals from space
宇宙からの異常な電波信号を、干渉を除去しながら効率的に特定し、さらなる調査を行うために用いることのできる機械学習法について報告した論文がNature Astronomyに掲載される。この研究は、地球外知的生命体探査(SETI)のブレイクスルー・リッスン・イニシアチブからのデータを用いて、これまで検出されなかった8個の興味深い信号を特定したが、それらは追観測で再検出はされていない。
人為的な電波信号は自然現象による信号と区別できることから、特定の種類の電波信号の検出は、技術力の発達した生命体を示す可能性が示唆されている。SETI計画は星から届く明らかな人為的信号を検出するために、数十年にわたって電波望遠鏡で天空を探査している。しかし、この探査は人間の技術による干渉によって複雑化し、大規模なデータセットからの除外に時間を要する偽陽性を生じる可能性がある。
Peter Maたちは、820個の星を観測するロバート・バード・グリーンバンク望遠鏡で得られた480時間以上のデータに適用した、機械学習に基づいた選択方法を示している。この方法は、1億1500万件のデータを分析し、その中からおよそ300万件の興味深い信号を特定した。この方法によってデータをさらに2万515件の信号に絞り込むことができ、この数字は同じデータセットの従来の解析に比べて100分の1未満である。著者たちは2万515件の信号を調べ、これまで検出されていなかった興味深い8件の信号を発見したが、追観測ではこれらの対象は再検出されていない。
著者たちは、SETIや同様のデータ駆動型調査を加速させるために、彼らの方法が他の大規模なデータセットに適用できると考えている。
doi: 10.1038/s41550-022-01872-z
注目の論文
-
11月21日
天文学:近くの恒星を周回する若いトランジット惑星が発見されるNature
-
11月21日
気候:20世紀の海水温を再考するNature
-
11月20日
生態学:リュウキュウアオイが太陽光を共有するNature Communications
-
11月19日
気候変動:パリ協定を達成するために、CO2の受動的吸収を計算から分離するNature
-
11月18日
惑星科学:嫦娥6号のサンプルが裏側の月火山活動の年代を特定Nature
-
11月13日
地球科学:2022年のマウナロア火山の噴火を調査するNature Communications