【機械学習】鳥のように滑空するグライダーをAIで実現
Nature
2018年9月20日
機械学習を活用して、機械式グライダーに鳥のような滑空を習得させたことを報告する論文が、今週掲載される。
滑空する鳥類は、上昇温暖気流に乗ることで、羽ばたきをせずに飛行したり高度を上げたりできる。しかし、こうした上昇気流の全体像は複雑で、絶えず変化しているため、鳥類がどのようにして上昇気流を発見し、上昇気流の中を航行しているのかは分かっていない。その全容が解明できていないため、飛行機が鳥と同じように航行できるよう学習させることは難題になっている。
今回、Massimo Vergassolaたちの研究グループはこの課題に取り組むため、「強化学習」という手法を用いた。強化学習は、動的な機械学習の手法で、子どもが学習する場合とかなり似ており、人工エージェントが環境との相互作用によって学習し、正しい行動を取った場合には「報酬」が、間違った行動を取った場合には「罰」が与えられるというものだ。Vergassolaたちは、翼長2メートルのグライダーをプログラムして、機上での周辺環境の測定値に基づいて、空中でのロールとピッチを調節できるようにした。数日間の試験飛行によって得られたグライダーの集団体験をプールして、鉛直風の加速度とロール方向のトルク(グライダーを横方向に回転させるように作用する力)を航行の手掛かりとする航法が考案された。Vergassolaたちは、この方法が屋外実験で成功したことから、鳥類もこのような手掛かりに依存している可能性があるという考えを示している。
Vergassolaたちは、個別の上昇気流に乗って滑空する能力は、渡り鳥(またはそれを模倣した機械)が数百キロメートルの渡りを迅速かつ安全に実行するための特徴の1つにすぎない点を指摘している。今後、強い上昇気流を見分ける上で役立つ飛行の手掛かりに関して追加の研究が行われれば、鳥の渡りがどのように行われるかに関する我々の理解がさらに深まり、効率の良い自律型長距離グライダーの開発にも役立つ可能性がある。
doi:10.1038/s41586-018-0533-0
「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。
注目のハイライト
-
気候変動:南極の氷が人為的な温暖化が1.5℃の温暖化の限界に近づいていることを示唆しているNature Geoscience
-
惑星科学:ボイジャー2号が天王星をフライバイしたのは太陽の異常現象の最中だったNature Astronomy
-
気候変動:プライベート航空による二酸化炭素排出量の大幅な増加Communications Earth & Environment
-
惑星科学:火星の岩石堆積物は太古の海の名残かもしれないScientific Reports
-
地球科学:インドプレートとユーラシアプレートの収束の加速を説明するNature
-
メンタルヘルス:うつ病は7か国における婚姻状況と関連しているかもしれないNature Human Behaviour